翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

sectional curvature : ウィキペディア英語版
sectional curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional plane σ''p'' in the tangent space at ''p''. It is the Gaussian curvature of the surface which has the plane σ''p'' as a tangent plane at ''p'', obtained from geodesics which start at ''p'' in the directions of σ''p'' (in other words, the image of σ''p'' under the exponential map at ''p''). The sectional curvature is a smooth real-valued function on the 2-Grassmannian bundle over the manifold.
The sectional curvature determines the curvature tensor completely.
==Definition==
Given a Riemannian manifold and two linearly independent tangent vectors at the same point, ''u'' and ''v'', we can define
:K(u,v)=
Here ''R'' is the Riemann curvature tensor.
In particular, if ''u'' and ''v'' are orthonormal, then
:K(u,v) = \langle R(u,v)v,u\rangle.
The sectional curvature in fact depends only on the 2-plane σ''p'' in the tangent space at ''p'' spanned by ''u'' and ''v''. It is called the sectional curvature of the 2-plane σ''p'', and is denoted ''K''(σ''p'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「sectional curvature」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.